Math Books
Moderators: gmalivuk, Moderators General, Prelates
 doogly
 Dr. The Juggernaut of Touching Himself
 Posts: 5463
 Joined: Mon Oct 23, 2006 2:31 am UTC
 Location: Lexington, MA
 Contact:
Re: Math Books
Dan Rockmore's Stalking the Riemann Hypothesis could be good too. The reviews indicate that it can be pretty frustratingly nonmathy  only one equation! I think these reviewers do not actually know what "popular level" means.
Also worth noting that he is a sweet dude who taught my calc 3 class.
Also worth noting that he is a sweet dude who taught my calc 3 class.
LE4dGOLEM: What's a Doug?
Noc: A larval Doogly. They grow the tail and stinger upon reaching adulthood.
Keep waggling your butt brows Brothers.
Or; Is that your eye butthairs?
Noc: A larval Doogly. They grow the tail and stinger upon reaching adulthood.
Keep waggling your butt brows Brothers.
Or; Is that your eye butthairs?

 Posts: 7
 Joined: Sat Nov 28, 2015 10:12 pm UTC
Re: Math Books
Everyday Calculus: Discovering the Hidden Math All Around Us by Oscar E. Fernandez
Seems like a good book
Seems like a good book
 AngelAttractor
 Posts: 3
 Joined: Tue Dec 22, 2015 11:16 pm UTC
 Location: Serbia
Re: Math Books
Can someone please recommend me a book on the subject of nonlinear systems?

 Posts: 5
 Joined: Fri Oct 16, 2009 4:07 pm UTC
Re: Math Books
I've really enjoyed Infinite Dimensional Analysis by Aliprantis and Border.
It has a reasonably comprehensive coverage (at least, as comprehensive as you can get given the breadth of the subject matter) of topology, measure theory and functional analysis.
If anyone has suggestions of texts with a similar bend, I'd love to hear them.
It has a reasonably comprehensive coverage (at least, as comprehensive as you can get given the breadth of the subject matter) of topology, measure theory and functional analysis.
If anyone has suggestions of texts with a similar bend, I'd love to hear them.
Re: Math BooksBanach Lattices
I'm trying to learn about Banach Lattices (Riesz spaces which are Banach Spaces). The textbook my professor gave me to work from is Peter MeyerNieberg's "Banach Lattices", 1st edition, 1991. I'm finding it extremely dense/hard to follow. (I didn't have any problem with Kreyszig's Introductory Functional Analysis, which is my background). Does anyone have other books to recommend that I might find more accessible?

 Posts: 5
 Joined: Fri Oct 16, 2009 4:07 pm UTC
Re: Math BooksBanach Lattices
Farabor wrote:I'm trying to learn about Banach Lattices (Riesz spaces which are Banach Spaces). The textbook my professor gave me to work from is Peter MeyerNieberg's "Banach Lattices", 1st edition, 1991. I'm finding it extremely dense/hard to follow. (I didn't have any problem with Kreyszig's Introductory Functional Analysis, which is my background). Does anyone have other books to recommend that I might find more accessible?
The book I mention one post above (Aliprantis & Border) covers Banach Lattices. I think that was also one of Aliprantis' main research areas, so it might be worth a look.
Re: Math Books
can anyone recommend a good calculus book ?
 Bane Harper
 Posts: 30
 Joined: Wed Feb 15, 2017 11:27 am UTC
Re: Math Books
If you are new to calculus begin with YouTube videos and Pre‑Calculus For Dummies by Yang Kuang
Re: Math Books
I like that book already , i mean i was sort of stuck at trigonometry for sometime now
Not sure where it begins or where it ends .
I somehow need to understand trigonometry a bit more deeply , i mean everything in it , the beginning and the end . i hope there is such a thing in trigonometry
Anyway that book looks nice especially this part
Do you know any other good trigonometry books or trigonometry teaching websites ?
Not sure where it begins or where it ends .
I somehow need to understand trigonometry a bit more deeply , i mean everything in it , the beginning and the end . i hope there is such a thing in trigonometry
Anyway that book looks nice especially this part
Do you know any other good trigonometry books or trigonometry teaching websites ?
Re: Math Books
What do you learn after this if your aim is learning calculus ?
 doogly
 Dr. The Juggernaut of Touching Himself
 Posts: 5463
 Joined: Mon Oct 23, 2006 2:31 am UTC
 Location: Lexington, MA
 Contact:
Re: Math Books
What is motivating your study for this? Any particular application or field, or just a pure math curiosity?
LE4dGOLEM: What's a Doug?
Noc: A larval Doogly. They grow the tail and stinger upon reaching adulthood.
Keep waggling your butt brows Brothers.
Or; Is that your eye butthairs?
Noc: A larval Doogly. They grow the tail and stinger upon reaching adulthood.
Keep waggling your butt brows Brothers.
Or; Is that your eye butthairs?
Re: Math Books
Do you want to see a list of things i have gathered ? i don't know if i should use this thread to post that list of things ...
Are you interested in that list of things ?
Anyway i am trying to learn calculus
Are you interested in that list of things ?
Anyway i am trying to learn calculus
Re: Math Books
I'm not sure what you mean by "learn". You posted a great list of trigonometric identities, which are useful tools in actually doing trigonometry. But it almost seems as if you equate memorizing these tables with "learning trig". For example, missing on this page is the unit circle, which visually conveys what "sin" and "cos" etc. mean.monkey3 wrote:What do you learn after this if your aim is learning calculus ?
In any case, trig is not a precursor to calculus. It's just that a lot of the useful applications of calculus require trig anyway, and trig gives you a whole bunch of new functions to play calculus with, so it's good to have those tools under your belt first.
Calculus is first and foremost about rates of change. Things change over time (or distance, or whatever), and at any given (one) point there is a certain rate of change, but you can only "see" the change by comparing two points. So, you consider two points "very" close together and get an approximation (because it's changing!)... the closer together your two points the better the approximation. Calculus is about taking this to eleven.
For that, you need the idea of a limit. As "delta x" (the difference between the two points) goes to zero, the value of the expression you are looking for will get closer and closer to some value; that value is the limit.
Trivial case: y=2x. As x approaches 4, y will approach 8.
Problematic case: y=1/x. As x approaches 0, y increases without bound ("approaches infinity").
Useful illustration: y=x^{2}/x.
As x approaches 0, what happens? The bottom makes the expression want to blow up ("approach infinity"), but the top looks well behaved. You can't just divide both sides by x to simplify, because at x=0 you're dividing by 0. However, you can do that as long as x doesn't equal zero. What happens? We simply get y=x in those cases. As x approaches zero, y also approaches zero. The limit of the expression x^{2}/x as x approaches 0 is zero.
More interesting expressions where the limit isn't obvious are available in a zillion textbooks. But that's the idea of a limit.
We then apply that idea to rates of change, to find (say) the slope of a curve. That curve needs to be expressed first in math, for example,
y=3x^{2}
Slope is rise over run; that's easy if you have a straight line. Just pick two points and do arithmetic; the slope is constant. But with this curve, the slope keeps changing. We want an expression for the slope of this curve at any point. To do this, we still pick two points. One of them will be x (the point at which we want the value of the slope), and the other will be nearby: (x+a), where a is small.
Slope is rise over run. The run is easy... it's the horizontal distance between the two points It's just a.
Algebraically, it's (x+a)x (the x coordinate of the second point, minus the x coordinate of the first point)
The rise is a little harder; we need to use the formula for our original curve and take the difference of the two resulting values. For the first point it's just
3(x)^{2}
For the second point it's
3(x+a)^{2}
Subtract the two, and the rise is:
rise = 3(x+a)^{2}  3(x)^{2}
rise = (3x^{2} + 6xa + 3a^{2})  3(x)^{2}
rise = 6xa + 3a^{2}
so the slope = rise/run = (6xa + 3a^{2})/a = 6xa/a + 3a^{2}/a
Now, take the limit as a=>0 (as the distance between the two points we used to calculate the slope approximation vanishes)
We get slope = 6x
The a in the denominator can never be zero, but we can see from the expression that the closer we get to a=0, the closer the equation comes to y=6x.
The slope actually increases (linearly in x). As x moves to the right, the slope gets steeper. (and as it moves to the left of zero, it gets steeper in the other direction). When x is zero, the slope is zero, and the curve is at a minimum (or maximum).
That is calculus in action.
No trig involved. But of course trig functions have slopes, and there's lots of fun to be had with calculus on trig functions.
Jose
Order of the Sillies, Honoris Causam  bestowed by charlie_grumbles on NP 859 * OTTscar winner: Wordsmith  bestowed by yappobiscuts and the OTT on NP 1832 * Ecclesiastical Calendar of the Order of the Holy Contradiction * Please help addams if you can. She needs all of us.
Re: Math Books
Thanks ucim ,
To be honest , i started this account to improve my math from the very beginning ...
Arithmetic
Algebra
Trigonometry
Differentiation
Integration
Differential equation
The sad part is i haven't got a list like that for differential equations , i don't even know what i should be looking for ...
To be honest , i started this account to improve my math from the very beginning ...
Arithmetic
Algebra
Trigonometry
Differentiation
Integration
Differential equation
Spoiler:
The sad part is i haven't got a list like that for differential equations , i don't even know what i should be looking for ...
 gmalivuk
 GNU Terry Pratchett
 Posts: 26547
 Joined: Wed Feb 28, 2007 6:02 pm UTC
 Location: Here and There
 Contact:
Re: Math Books
I put the middle of that post in [spoiler] tags to make the page a bit easier to read. Please do that whenever a post is going to be more than a couple of screenheights to scroll through.
 doogly
 Dr. The Juggernaut of Touching Himself
 Posts: 5463
 Joined: Mon Oct 23, 2006 2:31 am UTC
 Location: Lexington, MA
 Contact:
Re: Math Books
Kline's Calculus: An Intuitive and Physical Approach is pretty tight, combo it up with Spivak if you want a little more high falutin delightfulness.
LE4dGOLEM: What's a Doug?
Noc: A larval Doogly. They grow the tail and stinger upon reaching adulthood.
Keep waggling your butt brows Brothers.
Or; Is that your eye butthairs?
Noc: A larval Doogly. They grow the tail and stinger upon reaching adulthood.
Keep waggling your butt brows Brothers.
Or; Is that your eye butthairs?
Re: Math Books
Thanks for putting it in the spoiler tag , and thanks for the books suggestions
Re: Math Books
Can anyone recommend a book on advanced numerical analysis of differential equations? I am particularly interested in one with reasonably fast techniques for stiff nonperiodic PDEs with both a finite and infinite [0,Inf) horizon.
Math NonTextbook
I'd like some recommendations on a book I could read to my kids to get them to get them excited/inspired about the value of Math, and that may interest them to pursue Math studies on a serious level.
They're all pretty good at math, doing work 23 grade levels above where they're at. But I think the right interest may allow them to really enjoy and pursue math, rather than just learning it as a necessary evil.
I'd prefer a book not written towards kids. Something that will be a challenge for them, but not require technical understanding of more than just elementary math. Learning math isn't the focus, becoming interested in math is the objective.
This may be a biography of a mathematician, or history of the development of mathematics, or something along those lines.
Any recommendations? What peaked your interest and motivated you to pursue this field?
Personally, I found my interest at age 8 that I obsessed about and still love to this day and has turned into a very successful career and personal satisfaction for me. I want to provide the opportunity for my kids to find their interest/obsession at a young age as well...
They're all pretty good at math, doing work 23 grade levels above where they're at. But I think the right interest may allow them to really enjoy and pursue math, rather than just learning it as a necessary evil.
I'd prefer a book not written towards kids. Something that will be a challenge for them, but not require technical understanding of more than just elementary math. Learning math isn't the focus, becoming interested in math is the objective.
This may be a biography of a mathematician, or history of the development of mathematics, or something along those lines.
Any recommendations? What peaked your interest and motivated you to pursue this field?
Personally, I found my interest at age 8 that I obsessed about and still love to this day and has turned into a very successful career and personal satisfaction for me. I want to provide the opportunity for my kids to find their interest/obsession at a young age as well...
Who is online
Users browsing this forum: Bing [Bot] and 12 guests